65 research outputs found

    Prediction of Turbulent Shear Stresses through Dysfunctional Bileaflet Mechanical Heart Valves using Computational Fluid Dynamics

    Full text link
    There are more than 300,000 heart valves implanted annually worldwide with about 50% of them being mechanical valves. The heart valve replacement is often a common treatment for severe valvular disease. However, valves may dysfunction leading to adverse hemodynamic conditions. The current computational study investigated the flow around a bileaflet mechanical heart valve at different leaflet dysfunction levels of 0%, 50%, and 100%, and documented the relevant flow characteristics such as vortical structures and turbulent shear stresses. Studying the flow characteristics through these valves during their normal operation and dysfunction can lead to better understanding of their performance, possibly improved designs, and help identify conditions that may increase the potential risk of blood cell damage. Results suggested that maximum flow velocities increased with dysfunction from 2.05 to 4.49 ms-1 which were accompanied by growing eddies and velocity fluctuations. These fluctuations led to higher turbulent shear stresses from 90 to 800 N.m-2 as dysfunctionality increased. These stress values exceeded the thresholds corresponding to elevated risk of hemolysis and platelet activation. The regions of elevated stresses were concentrated around and downstream of the functional leaflet where high jet velocity and stronger helical structures existed

    An Adaptive Feature Extraction Algorithm for Classification of Seismocardiographic Signals

    Full text link
    This paper proposes a novel adaptive feature extraction algorithm for seismocardiographic (SCG) signals. The proposed algorithm divides the SCG signal into a number of bins, where the length of each bin is determined based on the signal change within that bin. For example, when the signal variation is steeper, the bins are shorter and vice versa. The proposed algorithm was used to extract features of the SCG signals recorded from 7 healthy individuals (Age: 29.4±\pm4.5 years) during different lung volume phases. The output of the feature extraction algorithm was fed into a support vector machines classifier to classify SCG events into two classes of high and low lung volume (HLV and LLV). The classification results were compared with currently available non-adaptive feature extraction methods for different number of bins. Results showed that the proposed algorithm led to a classification accuracy of ~90%. The proposed algorithm outperformed the non-adaptive algorithm, especially as the number of bins was reduced. For example, for 16 bins, F1 score for the adaptive and non-adaptive methods were 0.91±\pm0.05 and 0.63±\pm0.08, respectively

    Numerical Modeling of Pulse Wave Propagation in a Stenosed Artery using Two-Way Coupled Fluid Structure Interaction (FSI)

    Full text link
    As the heart beats, it creates fluctuation in blood pressure leading to a pulse wave that propagates by displacing the arterial wall. These waves travel through the arterial tree and carry information about the medium that they propagate through as well as information of the geometry of the arterial tree. Pulse wave velocity (PWV) can be used as a non-invasive diagnostic tool to study the functioning of cardiovascular system. A stenosis in an artery can dampen the pulse wave leading to changes in the propagating pulse. Hence, PWV analysis can be performed to detect a stenosed region in arteries. This paper presents a numerical study of pulse wave propagation in a stenosed artery by means of two-way coupled fluid structure interaction (FSI). The computational model was validated by the comparison of the simulated PWV results with theoretical values for a healthy artery. Propagation of the pulse waves in the stenosed artery was compared with healthy case using spatiotemporal maps of wall displacements. The analysis for PWV showed significance differences between the healthy and stenosed arteries including damping of propagating waves and generation of high wall displacements downstream the stenosis caused by flow instabilities. This approach can be used to develop patient-specific models that are capable of predicting PWV signatures associated with stenosis changes. The knowledge gained from these models may increase utility of this approach for managing patients at risk of stenosis occurrence

    Seismocardiographic Signal Timing with Myocardial Strain

    Full text link
    Speckle Tracking Echocardiography (STE) is a relatively new method for cardiac function evaluation. In the current study, STE was used to investigate the timing of heart-induced mostly subaudible (i.e., below the frequency limit of human hearing) chest-wall vibrations in relation to the longitudinal myocardial strain. Such an approach may help elucidate the genesis of these vibrations, thereby improving their diagnostic value

    Heart Rate Monitoring During Different Lung Volume Phases Using Seismocardiography

    Full text link
    Seismocardiography (SCG) is a non-invasive method that can be used for cardiac activity monitoring. This paper presents a new electrocardiogram (ECG) independent approach for estimating heart rate (HR) during low and high lung volume (LLV and HLV, respectively) phases using SCG signals. In this study, SCG, ECG, and respiratory flow rate (RFR) signals were measured simultaneously in 7 healthy subjects. The lung volume information was calculated from the RFR and was used to group the SCG events into low and high lung-volume groups. LLV and HLV SCG events were then used to estimate the subjects HR as well as the HR during LLV and HLV in 3 different postural positions, namely supine, 45 degree heads-up, and sitting. The performance of the proposed algorithm was tested against the standard ECG measurements. Results showed that the HR estimations from the SCG and ECG signals were in a good agreement (bias of 0.08 bpm). All subjects were found to have a higher HR during HLV (HRHLV_\text{HLV}) compared to LLV (HRLLV_\text{LLV}) at all postural positions. The HRHLV_\text{HLV}/HRLLV_\text{LLV} ratio was 1.11±\pm0.07, 1.08±\pm0.05, 1.09±\pm0.04, and 1.09±\pm0.04 (mean±\pmSD) for supine, 45 degree-first trial, 45 degree-second trial, and sitting positions, respectively. This heart rate variability may be due, at least in part, to the well-known respiratory sinus arrhythmia. HR monitoring from SCG signals might be used in different clinical applications including wearable cardiac monitoring systems

    Grouping Similar Seismocardiographic Signals Using Respiratory Information

    Full text link
    Seismocardiography (SCG) offers a potential non-invasive method for cardiac monitoring. Quantification of the effects of different physiological conditions on SCG can lead to enhanced understanding of SCG genesis, and may explain how some cardiac pathologies may affect SCG morphology. In this study, the effect of the respiration on the SCG signal morphology is investigated. SCG, ECG, and respiratory flow rate signals were measured simultaneously in 7 healthy subjects. Results showed that SCG events tended to have two slightly different morphologies. The respiratory flow rate and lung volume information were used to group the SCG events into inspiratory/expiratory groups or low/high lung-volume groups, respectively. Although respiratory flow information could separate similar SCG events into two different groups, the lung volume information provided better grouping of similar SCGs. This suggests that variations in SCG morphology may be due, at least in part, to changes in the intrathoracic pressure or heart location since those parameters correlates more with lung volume than respiratory flow. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features, and better signal characterization, and classification

    The Influence of the Aortic Root Geometry on Flow Characteristics of a Bileaflet Mechanical Heart Valve

    Full text link
    Bileaflet mechanical heart valves have one of the most successful valve designs for more than 30 years. These valves are often used for aortic valve replacement, where the geometry of the aortic root sinuses may vary due to valvular disease and affect valve performance. Common geometrical sinus changes may be due to valve stenosis and insufficiency. In the current study, the effect of these geometrical changes on the mean flow and velocity fluctuations downstream of the valve and aortic sinuses were investigated. The study focused on the fully-open leaflet position where blood velocities are close to their maximum. Simulation results were validated using previous experimental laser Doppler anemometry (LDA) measurements. Results showed that as the stenosis and insufficiency increased there were more flow separation and increased local mean velocity downstream of the leaflets. In addition, the detected elevated velocity fluctuations were associated with higher Reynolds shear stresses levels, which may increase the chances of blood damage and platelet activation and may lead to increased risk of blood clot formation

    A comprehensive computational model of sound transmission through the porcine lung

    Get PDF
    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This subject-specific model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in COMSOL FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment
    • …
    corecore